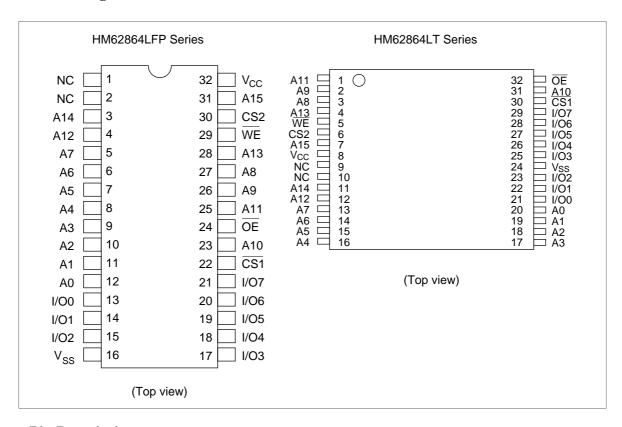
65536-word × 8-bit High Speed CMOS Static RAM

HITACHI

ADE-203-255B (Z) Rev. 2.0 Jul. 4, 1995

Description

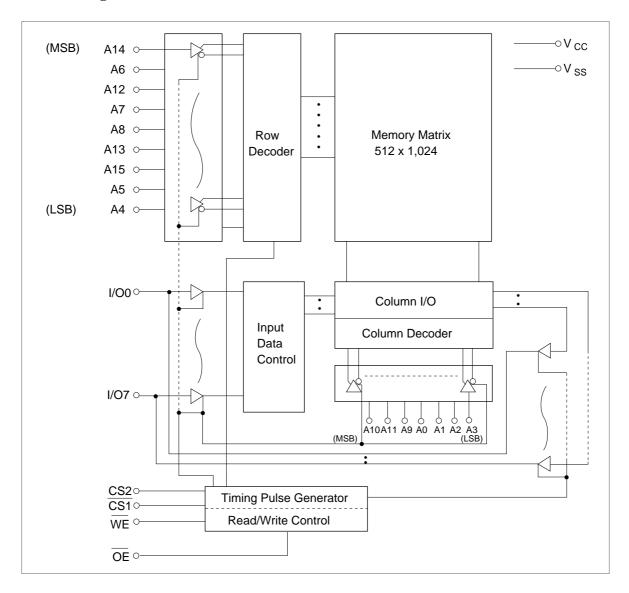
The Hitachi HM62864 is a CMOS static RAM organized 64-kword \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.8 μ m Hi-CMOS process technology. It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. The device, packaged in a 525-mil SOP (460-mil body SOP) and a 8 \times 20 mm TSOP with thickness of 1.2 mm, is available for high density mounting. TSOP package is suitable for cards.


Features

- High speed
 - Fast access time: 55/70/85 ns (max)
- · Low power
 - Active: 50 mW (typ) (f = 1 MHz)
 - Standby: 2 μW (typ)
- Single 5 V supply
- Completely static memory
 No clock or timing strobe required
- · Equal access and cycle times
- Common data input and output Three state output
- Directly TTL compatible All inputs and outputs
- Capability of battery backup operation
 2 chip selection for battery backup

Ordering Information

Type No.	Access Time	Package
HM62864LFP-7	70 ns	525-mil 32-pin plastic SOP (FP-32D)
HM62864LFP-8	85 ns	
HM62864LFP-5SL	55 ns	
HM62864LFP-7SL	70 ns	
HM62864LFP-8SL	85 ns	
HM62864LT-7	70 ns	8 mm × 20 mm 32-pin TSOP (normal type) (TFP-32D)
HM62864LT-8	85 ns	
HM62864LT-5SL	55 ns	
HM62864LT-7SL	70 ns	
HM62864LT-8SL	85 ns	


Pin Arrangement

Pin Description

Pin Name	Function
A0 to A15	Address
I/O0 to I/O7	Input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable
ŌĒ	Output enable
NC	No connection
V _{cc}	Power supply
V_{ss}	Ground

Block Diagram

Function Table

CS1	CS2	ŌĒ	WE	Mode	V _{cc} Current	I/O Pin	Ref. Cycle
Н	Χ	Χ	Χ	Not selected	I_{SB}, I_{SB1}	High-Z	_
X	L	X	Χ	Not selected	I _{SB} , I _{SB1}	High-Z	
L	Н	Н	Н	Output disable	I _{cc}	High-Z	
L	Н	L	Н	Read	I _{cc}	Dout	Read cycle (1) to (3)
L	Н	Н	L	Write	I _{cc}	Din	Write cycle (1)
L	Н	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: X: High or Low

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage ^{*1}	V_{cc}	-0.5 to +7.0	V
Terminal voltage *1	V _T	-0.5^{*2} to $V_{cc} + 0.3^{*3}$	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Notes: 1. Relative to V_{ss}

2. V_T min: -3.0 V for pulse half-width ≤ 50 ns

3. Maximum voltage is 7.0V

Recommended DC Operating Conditions ($Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V_{cc}	4.5	5.0	5.5	V
	V _{ss}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	_	V _{cc} + 0.3	V
Input low (logic 0) voltage	V _{IL}	-0.3 ^{*1}	_	0.8	V

Note: 1. V_{IL} min: -3.0 V for pulse half-width ≤ 50 ns

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ±10%, V_{SS} = 0 V)

Parameter		Symbol	Min	Typ ^{⁺1}	Max	Unit	Test conditions
Input leakage curre	ent	$ I_{Li} $		_	1	μΑ	$V_{SS} \le Vin \le V_{CC}$
Output leakage current		I _{LO}			1	μΑ	$\overline{\text{CS1}} = \text{V}_{\text{IH}} \text{ or CS2} = \text{V}_{\text{IL}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}}$ or $\overline{\text{WE}} = \text{V}_{\text{IL}}, \text{V}_{\text{SS}} \leq \text{V}_{\text{I/O}} \leq \text{V}_{\text{CC}}$
Operating power supply current		I _{cc}		10	15	mA	$\overline{\text{CS1}} = \text{V}_{\text{IL}}, \text{CS2} = \text{V}_{\text{IH}},$ Others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{ mA}$
Average operating power supply	HM62864-5	I _{CC1}		55	70	mA	$\frac{\text{Min cycle, duty} = 100\%,}{\text{CS1}} = V_{\text{IL}}, \text{CS2} = V_{\text{IH}},$
current	HM62864-7	I _{CC1}		55	70		Others = V_{IH}/V_{IL} , $I_{I/O} = 0$ mA
	HM62864-8	I _{CC1}	_	45	60	_	
		I _{CC2}		10	15	mA	$\begin{split} & \text{Cycle time} = 1 \mu\text{s}, \text{duty} = 100\%, \\ & I_{\text{I/O}} = 0 \text{mA}, \overline{\text{CS1}} \leq \text{V}_{\text{IL}}, \text{CS2} \geq \text{V}_{\text{IH}}, \\ & \text{Others} = \text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ & 0 \text{V} \leq \text{V}_{\text{IL}} \leq 0.2 \text{ V} \end{split}$
Standby power sup	oply current	I _{SB}		0.7	3	mA	(1) or (2) (1) CS1 = V _{IH} , CS2 = V _{IH} (2) CS2 = V _{IL}
				0.4	100	μА	0 V \leq Vin \leq V _{CC} (1) or (2) (1) $\overline{\text{CS1}} \geq$ V _{CC} $-$ 0.2 V,
		I _{SB1}		0.4	50*2	_	$CS2 \ge V_{CC} - 0.2V$ (2) $0 \ V \le CS2 \le 0.2 \ V$
Output low voltage		V _{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high voltage	Э	V _{OH}	2.4	_		V	$I_{OH} = -1.0 \text{ mA}$

Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

Capacitance (Ta = 25°C, f = 1.0 MHz)^{*1}

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin	_	_	5	pF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	_	8	pF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

^{2.} This characteristics is guaranteed only for SL version.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted.)

Test Conditions

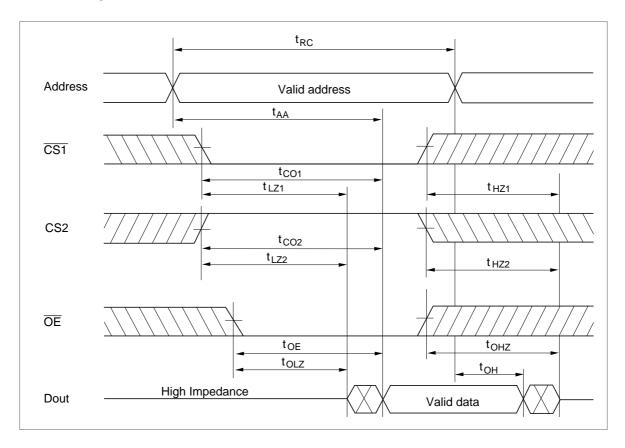
• Input pulse levels: 0.8 V to 2.4 V

• Input rise and fall time: 5 ns

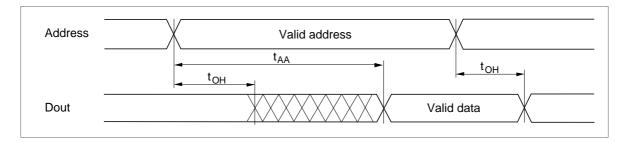
• Input and output timing reference levels: 1.5 V

• Output load: HM62864-5: 1 TTL + 30 pF (Including scope & jig)

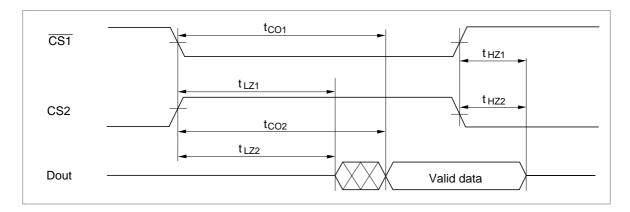
HM62864-7/8: 1 TTL + 100 pF (Including scope & jig)


Read Cycle

			HM62	864-5	HM628	864-7	HM62	864-8		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time		t_{RC}	55	_	70	_	85	_	ns	
Address access time		t _{AA}	_	55	_	70	_	85	ns	
Chip select access time	CS1	t _{co1}	_	55	_	70	_	85	ns	
	CS2	t _{CO2}	_	55	_	70	_	85	ns	
Output enable to output valid		t _{OE}	_	30	_	40	_	45	ns	
Chip selection to output in	CS1	t _{LZ1}	5	_	10	_	10	_	ns	2
low-Z	CS2	t _{LZ2}	5	_	10	_	10	_	ns	2
Output enable to output in low-Z		t _{OLZ}	5	_	5	_	5	_	ns	2
Chip deselection in output in	CS1	t _{HZ1}	0	20	0	25	0	30	ns	1, 2
high-Z	CS2	t _{HZ2}	0	20	0	25	0	30	ns	1, 2
Output disable to output in high-Z		t _{OHZ}	0	20	0	25	0	30	ns	1, 2
Output hold from address change		t _{OH}	5	_	10	_	10	_	ns	

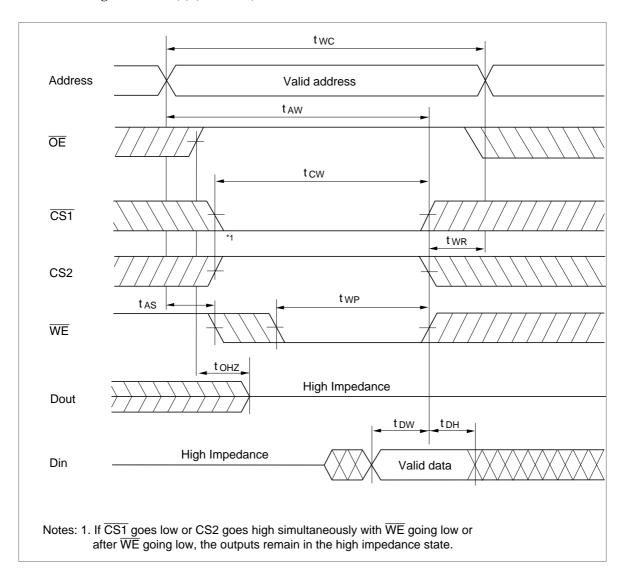

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

^{2.} This parameter is sampled and not 100% tested.

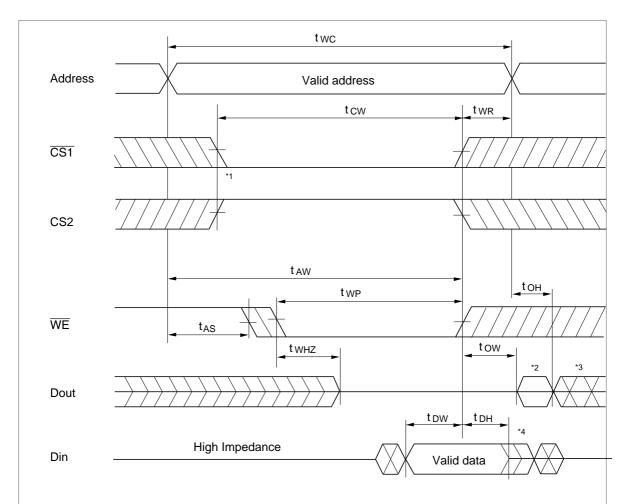

Read Timing Waveform (1) $(\overline{WE} = V_{IH})$

Read Timing Waveform (2) $(\overline{WE} = V_{IH})$

Read Timing Waveform (3) $(\overline{WE} = V_{IH})$


Write Cycle

		HM62	864-5	HM62864-7		HM62864-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t_{WC}	55	_	70	_	85	_	ns	
Chip selection to end of write	t _{cw}	50	_	60	_	75	_	ns	4
Address setup time	t _{AS}	0	_	0	_	0	_	ns	5
Address valid to end of write	t _{AW}	50		60	_	75	_	ns	
Write pulse width	t _{wP}	40		50	_	55	_	ns	3, 8
Write recovery time	t _{wR}	0		0	_	0	_	ns	6
Write to output in high-Z	t _{whz}	0	20	0	25	0	30	ns	1, 2, 7
Data to write time overlap	t _{DW}	30		30	_	35	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	ns	
Output active from end of write	t _{ow}	5		5	_	5	_	ns	2
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	0	30	ns	1, 2, 7


Notes: 1. t_{WHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- 3. A write occurs during the overlap of a low $\overline{CS1}$, a high CS2 and a low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high, and \overline{WE} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low, and \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.
- 4. t_{CW} is measured from the later of $\overline{CS1}$ going low or CS2 going high to the end of write.
- 5. $t_{\mbox{\scriptsize AS}}$ is measured from the address valid to the beginning of write.
- 6. t_{WR} is measured from the earliest of $\overline{CS1}$ or \overline{WE} going high or CS2 going low to the end of write cycle.
- 7. During this period, I/O pin are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- 8. In the write cycle with $\overline{\text{OE}}$ low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention, $t_{\text{WP}} \ge t_{\text{WHZ}} \max + t_{\text{DW}} \min$.

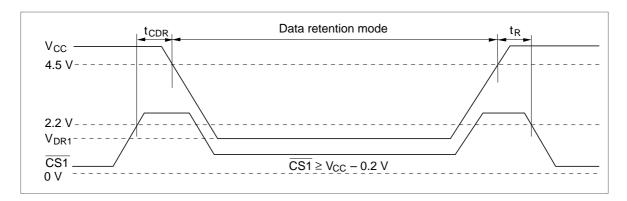
Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) (OE Low Fixed)

Notes: 1. If $\overline{\text{CS1}}$ goes low or CS2 goes high simultaneously with $\overline{\text{WE}}$ going low or after $\overline{\text{WE}}$ going low, the outputs remain in the high impedance state.

- 2. Dout is the same phase of the latest written data in this write cycle.
- 3. Dout is the read data of next address.
- 4. If $\overline{\text{CS1}}$ is low and CS2 is high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.

Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C)


This characteristics is guaranteed only for L-version.

Parameter	Symbol	Min	Typ ^{⁺¹}	Max	Unit	Test conditions ^{*5}
V _{cc} for data retention	V_{DR}	2.0	_	5.5	V	$ \begin{array}{l} 0 \ V \leq Vin \leq V_{CC}, \ (1) \ or \ (2) \\ (1) \ \overline{CS1} \geq V_{CC} - 0.2 \ V, \\ CS2 \geq V_{CC} - 0.2 \ V \\ (2) \ 0 \ V \leq CS2 \leq 0.2 \ V \\ \end{array} $
Data retention current	CCDR		0.1	30*2	μА	$\begin{array}{l} V_{\text{CC}} = 3.0 \text{ V}, 0 \text{ V} \leq \text{Vin} \leq V_{\text{CC}}, \text{ (1) or (2)} \\ \text{(1) } \overline{\text{CS1}} \geq V_{\text{CC}} - 0.2 \text{ V}, \text{CS2} \geq V_{\text{CC}} - 0.2 \text{V} \\ \text{(2) } 0 \text{ V} \leq \text{CS2} \leq 0.2 \text{ V} \end{array}$
	I _{CCDR}	_	0.1	10 ^{*3}	μΑ	
Chip deselect to data retention time	t _{CDR}	0	_		ns	See retention waveform
Operation recovery time	t _R	t _{RC} *4	_	_	ns	

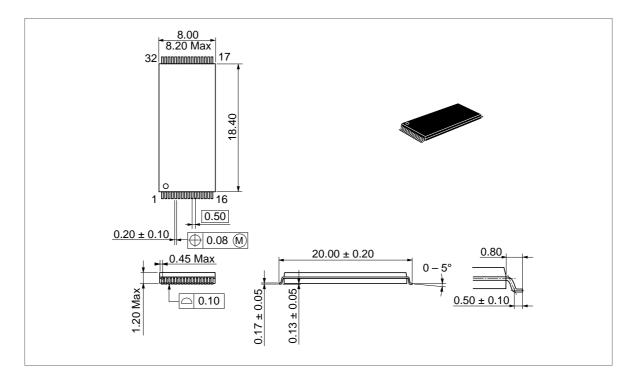
Notes: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and not guaranteed.

- 2. $10 \,\mu\text{A}$ max at Ta = 0 to 40°C .
- 3. This characteristics guaranteed for only L-SL version. 3 μA max at Ta = 0 to 40°C.
- 4. t_{RC} = Read cycle time.
- 5. CS2 controls address buffer, \overline{WE} buffer, $\overline{CS1}$ buffer, \overline{OE} buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address, \overline{WE} , \overline{OE} , $\overline{CS1}$, I/O) can be in the high impedance state. If $\overline{CS1}$ controls data retention mode, CS2 must be CS2 \geq V_{cc} 0.2 V or 0 V \leq CS2 \leq 0.2 V. The other input levels (address, \overline{WE} , \overline{OE} , I/O) can be in the high impedance state.

Low V_{CC} **Data Retention Timing Waveform** (1) (CS1 Controlled)


 $Low~V_{CC}~Data~Retention~Timing~Waveform~(2)~(CS2~Controlled)\\$

Package Dimensions


HM62864LFP Series (FP-32D)

Unit: mm

HM62864LT Series (TFP-32D)

Unit: mm

